Proposed Trigger Configuration file changes

for 2002-2003 run

Version 10.0

Jeff Landgraf: jml@bnl.gov
We need to support two major changes to the trigger for the 2002-2003 run. The first is that we need to support the “New TCU”, which from the configuration perspective is different mainly because the Trigger Word lookup table is split in two: the Physics Word LUT and the Trigger Word LUT. Ideally, we keep a similar user interface, in which the user defines bit patterns that correspond directly to a trigger condition. This is not entirely trivial to do. The second change is to support the “Trigger accounting”. The main point here is that the higher level triggers are linked to the lower level triggers. Each L1 trigger will have a list of Trigger Words, and will only accept events if the trigger word is on that list. L1 & L2 triggers will only accept events accepted by a corresponding algorithm at the lower level.

Also, purely for my convenience, I want to clean up a few aspects of the configuration. First, L3 algorithms should go into the trigger setup structures. Second, algorithm structures should be modified so that L1, L2, & L3 algorithm are setup the same way. Finally, I want to expand the configurable DSM registers, to be more general and to reduce wasted space a bit.

Preliminaries

The general run control scheme stays exactly the same. All commands are unchanged. The run control writes the configuration structure into binary files that are available to all nodes over NFS. Run control sends the message RTS_SEND_CONFIG to all nodes. Each node reads the configuration file as required and once finished returns RTS_SEND_CONFIG to the run control. The configuration file is not changed between the two messages, but after the RTS_SEND_CONFIG message has been sent back to Run Control, the file should not be read by any node.

There are a lot of changes needed the Trigger & some for the L3 algorithm setup. The rest of the configuration remains unchanged.

The most current version of the configuration structures will be in

/RTS/include/RC_Config.10.0.h

When we make this the production version, I will link RC_Config.h to point to this file.

There are many points throughout this document where I have arrays of quantities that can have a variable number of arguments. I set the maximum index of these arrays to MAX, for now as I haven’t specified all of them yet. I assume that I know the number of elements in the arrays. In the final configuration file I will know this by delimiting the last entry with zeros if possible. If zero is a valid parameter I will add a separate length field to the appropriate structures.

I. TCU LUT Configuration

In the end to configure the TCU we need to create 4 LUTs for the TCU: the Physics Word LUT, Trigger Word LUT, Action Word LUT and Prescale table. Last year, run control sent a set of bit masks to L1CTL which completely specified the TW LUT and the AW LUT. We will do the same thing this year, although the rules for building the LUT’s from the bit masks will be more complicated. In addition, the GUI itself will be building these lookup tables locally according to the same rules as part of the process for generating the structures and verifying that they are consistent.

On the user side, the trigger setup will include one or more Triggers. Each Trigger

Is a collection of trigger conditions, where a trigger condition is the physics part of the TW_DEF tables bit masks from last year. It also includes the detector LIVE requirement, the desired action word, pre-post counters, and detector request. Finally, it will include fields that the GUI will use to calculate desired pre-scales. (It will also include the info for the L1, L2 & L3 triggers to be discussed later.) The structure will look like this:

struct Trigger

{

UINT32
offlineBit;

PwCondition L0conditions[MAX];

UINT32
detectorLiveOnBits; // required to be alive

UINT32
detectorLiveOffBits;

UINT32
detectorRequest; // these fire!

UINT32
desiredAW;

UINT32
desiredPre;

UINT32
desiredPost;

float
ZDC_rate;

float

expected_L0_fraction;

float

desired_L0_rate;

//---

// The following are generated by the GUI from

// the above parameters...

UINT32
desiredL0PS; // User doesn’t enter

UINT32
PW_used[MAX]; // List of PW’s contributing

UINT32
TW_used[MAX]; // List of TW’s contributing

//---

....more stuff not related to TCU configuration....

};

struct PwCondition

{

UINT32
onbits;

UINT32
offbits;

};

This is roughly the same as TW_DEF last year. There are several important differences:

· Trigger can completely ignore this table. This table is only used for the user to set up triggers on the screen. The GUI then uses this table to populate additional structures that trigger will actually use to set up the TCU.

· There are multiple conditions. If any of the conditions in the list are satisfied than the trigger is satisfied.

· The prescale isn’t entered directly. Instead, one enters the expected L0 fraction (events satisfying conditions / zdc cooincidences) and desired L0 rate (evts / sec) for this Trigger. The GUI will calculate the desired prescale from these two values and the ZDC rate (at the beginning of the run). This is a first order attempt to make the prescales easier to use. Once we (the experts) have determined reasonable fractions for all of the triggers in use, then we can automatically pick up the zdc rates at the beginning of each run and have at least some shot at getting the dead-times & relative trigger rates to what we want (while only fiddling with one number per run...)

· The values that are to be put in the Action Word LUT are all marked as “desired”. This is because multiple triggers might have conflicting requests if they “overlap”. If the requests are not consistent, the GUI will not allow the run to start, so trigger need not worry about inconsistent requests. I will discuss how I will determine consistency in detail below.

The overall trigger setup is a collection of Triggers:

struct TrgSetup

{

Trigger triggers[MAX]; // GUI only

PwCondition contaminationDef; //----------------------

PwCondition pwc[MAX];

 //

PwLink
pwl[MAX];

 // Define the TCU LUTs

TwCondition twc[MAX];

 //

TwLink
twl[MAX];

 //

AwCondition awc[MAX];

 //----------------------

...stuff unrelated to TCU...

};

So we start with a TrgSetup structure, containing n valid trigger entries that were entered by the user. The contaminationDef condition is also set by the user. All other entries in the TrgSetup structure start out zeroed.

PW LUT construction

The first thing I do is loop through each trigger and copy each L0Condition into the pwc[] array. It is possible that two triggers have conditions that are exactly the same. In that case, I only enter the condition into pwc[] once. I call the index in this array a condition’s pwcIdx.

Secondly I build a table that is closely analogous to the PW LUT, which I’ll call the PwDef table. This is constructed as follows:

UINT32 PwDef[2^16]; // index is input bits for PW LUT

for(int input = 0; input<2^16; input++)

{

for(int pwcIdx=0;pwcIdx<nConditions;pwcIdx++)

{

if(ConditionSatisfied(pwc[pwcIdx], input))

PwDef |= 1<<pwcIdx;

}

}

PwDef is logically just like a PW although it has nConditions bits rather than 6 bits. In fact, it is even better than an arbitrary PW because it explicitly contains the conditions that lead to the PW. Regions where two conditions overlap are obvious because the pwcIdx bit is set for both conditions. The regions defined by a given PwDef are mutually exclusive by construction, and the confusing order dependence of conditions is completely removed.

To get a 6 bit action word, we need to associate the PwDef’s to the PW’s. For this we use the pwl[] array

PwLink

{

UINT32
pwDef;

UINT32
PW;

};

I fill this table by looping through the PwDef[] array I constructed above. For each unique value for PwDef I add an entry to PwLink. The PW value starts at 0 (for PwDef==0) and increments on each new PwDef.

Potentially, There could be as many as 2^nConditions PW created in this way, but in fact most conditions only overlap with one or two other conditions and the number of PW’s really turns out to be on the order of 2 * nConditions which easily fits into the 6-8 bits allocated.

To construct the actual PW LUT, one uses the pwc[] and pwl[] in a similar loop:

UINT32 PWLUT[2^16]; // index is input bits for PW LUT

for(int input = 0; input<2^16; input++)

{

UINT PW;

UINT PwDef

for(int pwcIdx=0;pwcIdx<nConditions;pwcIdx++)

{

if(ConditionSatisfied(pwc[pwcIdx], input))

{

PwDef |= 1<<pwcIdx;

}

}

for(int i=0;i<pwlEntries;i++)

{

if(pwl[i].PwDef == PwDef)

{

PW = pwl[i].PW;

break;

}

}

PWLUT[input] = PW;

if(ConditionsSatisfied(contaminationDef, input)

{

PWLUT[input] |= 1 << 13; // Assuming contamination

 // bit is 13!

}

}

Only two hitch’s: (1) you need to find the PW corresponding to the PwDef, (2) the contamination bit is effectively the 13th bit of the PW from which it gets sent to the detector busy FPGA.

TW LUT construction

The construction for the TW LUT is highly analogous to that of the PW LUT. The first difference is that the twConditions are not defined by onbits and offbits. Instead the TW condition is defined by:

struct TwConditions

{

UINT32 PW;

UINT32 detectorLiveOnBits;

UINT32 detectorLiveOffBits;

};

Each PW can require different detector bits. In addition, it is possible that a single PW comes from more than one trigger, resulting in more than one set of detector bits to be associated with a given PW.

For each trigger, I will maintain a list of PWs that satisfy the conditions for that trigger. I can produce this list at any time by looping through the pwl[] array to find conditions contributing to each PW. Then I loop through each trigger to see which triggers contain that condition.

To build TwConditions, I loop through every trigger. For each PW involved I add a entry into twc[] containing PW and that triggers detector masks. Again, as for the PwConditions, I will suppress repeated conditions.

Now I follow the exact procedure as for the PW LUT to build the twl[] structure.

struct TwLink

{

UINT32 twDef_hi;

UINT32 twDef_lo;

UINT32 TW;

};

I am assuming here, that there may be more than 32 TwConditions, so I expand the number of bits for TwDef.

In the same way as I obtain the list of PW for each Trigger, I will construct a list of TW for each Trigger.

There is an important implication here, which is that the TW and PW are generated by the computer without any information about the intended use. Therefore, TW and PW become featureless sequential integers. We drop any 0x1100 --> central. There definition is not guaranteed to be the same for runs with different configurations. They become internal parameters and will only be used by us for debugging.

AW LUT & Prescale table Construction

I treat the AW LUT & Prescale table interchangeably because they are both indexed by the TW. At this point, we have a set of Triggers. Each Trigger has a corresponding set of PW’s and a set of TW’s associated with it.

The GUI will provide the following structure to aid in the AW & Prescale table construction:

struct AwConditions

{

UINT32 TW;

UINT32 PS;

UINT32 AW;

UINT32 detectorRequest;

UINT32 pre;

UINT32 post;

};

To build this structure, for each TW I will examine all Triggers that contain TW. I will set the values according to the following table:

desiredPS

take the smallest value

desiredAW

require exact match

desiredDetectorRequest
require exact match

desiredPre

take the biggest value

desiredPost

take the biggest value

If the value requires an exact match, but two or more triggers have different values then the trigger setup is impossible and the GUI will not allow the run to start.

II. L1, L2 & L3 Trigger Configuration

It is important to make the handling of High-Level triggers consistent. It is also important to be able to integrate the different levels together if we wish to analyze the data produced.

Here is the paradigm I propose. (Most elements should be familiar because this is not a radical departure from the current scheme in L3.):

· At each level there are a list of algorithms. These algorithms have a name and an ID. The ID starts at 0 and increases. If an algorithm is retired, its number is not re-used.

· At run time, each running algorithm will be provided with a bit number at run time. This bit will represent the algorithm in status flags.

· Each algorithm has a set of algorithm specific input variables. This will consist of ~5 Integer variables and ~5 floating point variables. The code should access them as userInt[x], but if names are supplied to me, they will be displayed to the user of the GUI and available for display by name in the run-log and other clients of the databases.

· All levels will reject every event for which no algorithm is satisfied.

· All levels will provide an algorithm called “Always accept”, which will accept every event that satisfies its prescale.

· Each L2 & L3 algorithm should have a single prescale parameter. (We should get rid of the L3 postscale parameter unless someone can explain why it is needed to me. Otherwise, all levels should implement a postscale as well.)

· Each algorithm will be provided with a descriptor that describes what events it should run on. If an event does not match the descriptor, then the event should be rejected by the algorithm --- even if the event would normally have satisfied the algorithm.

· For every run, multiple algorithms run in parallel.

· Every algorithm can have multiple instances running in the same run. The user parameters & PS & event descriptors may be different for different instances of the same algorithm. (If an algorithm requires a lot of processing time, because, for example it needs to loop over all tracks, it can be divided into a shared processing step and separate instances for the decision step. The point is that the PS & event descriptor must be maintained separately for each instance.)

· Each algorithm should save counters of the events rejected by that event by TW.

The structure used to configure L1, L2 & L3 algorithms will look something like this:

struct L1Algorithm

{

int id;

int userInt[5];

int userFloat[5];

int specialProcessing;

//---

int PS;

// generated by GUI

int statusBit;

UINT32 evtTW[MAX];

FLOAT evtRS[MAX];

//---

};

struct L2Algorithm // L2 & L3

{

int id;

// algorithm id

int userInt[5];

// user variables

float userFloat[5];

int specialProcessing;

//---

int PS;

// generated by GUI

int statusBit;

UINT32 evtTrgBit;

//---

};

Here, the statusBit is the bit corresponding to this instance of the algorithm in the trigger summary flags. For L1 algorithms, the evtTW[] lists the TW’s that the algorithm should examine. If an events TW is not on this list, the algorithm must reject the event. Similiarly, for L2 & L3 algorithms, the algorithm should examine the events trigger summary for the previous level. If the evtTrgBit bit is not set, then the algorithm must reject the event. The specialProcessing flag is for future expansion. It’s use would be to set special processing for this event. (Write out raw data instead of clusters, etc...)

In the same way as for the L0 configuration, some of these values are entered by the user, and others are calculated by the GUI. The user will enter values into the trigger structure.

struct Trigger

{

.... L0 Configuration above

Algorithm l1;

Algorithm l2;

Algorithm l3;

float expected_L1_fraction;

float desired_L1_rate;

float expected_L2_fraction;

float desired_L2_rate;

float expected_L3_fraction;

float desired_L3_rate;

.... unrelated to high level algorithms

};

As for the L0 configuration, the subsystems will not examine the data from the Trigger structure. Instead, there will be corresponding entries in TrgSetup

struct TrgSetup

{

... L0 config ...

Algorithm l1_algorithms[MAX];

Algorithm l2_algorithms[MAX];

Algorithm l3_algorithms[MAX];

... other stuff ...

};

The GUI will generate the structures in TrgSetup from the information the user provided info in the Trigger structures.

L1 Rescaling

To be useful for analysis, the high-level triggers should uniformly sample events satisfying the lower-level conditions for that trigger. To do this, we must handle the complication that the L0 TW divides the event space into mutually exclusive sets, but the triggers we are interested in overlap. I have suggested a bunch of ways to do this in the past, at the trigger meeting I suggested doing this in a new system after DAQ but before OFFLINE. Here I suggest yet another method.

The goal is just to ensure that the effective prescale of every TW being fed into a L1 algorithm is the same. Each TW has a different PS at L0, so L1 needs to correct for this by maintaining different PS for each TW. The relationship we want is simply:

PS_0(TW) * PS_1(TW) = Constant (or)

PS_0(TW) * RS(TW) * PS_1 = Constant

Where RS(TW) is the rescale. With this definition, PS_1 is the additional scaling done purely at L1, independent of TW. PS_1 can never be less than one, so assuming we don’t want L1 to add any scaling, the constant should be MAX(PS_0(TW)).

The upshot is that L1 must use a different prescale for each Trigger Word. The prescale factor should be given by: RS(TW) * PS.

This simple rescale combined with the requirements / restrictions placed on the L1,L2&L3 algorithms guarantees that the sample of events satisfying a given L3 algorithm defined in a Trigger is exactly the same sample no matter how many other Triggers are defined at the same time. The effective prescale of the trigger is:

PS_EFF = MAX(PS_0(TW)) * PS_1 * PS_2 * PS_3

where TW is restricted to the trigger words contributing to this trigger.

The scaler information is NOT required to ensure that the event sample is unbiased.

The deadtime for the Trigger can be easily calculated from the scalers because of the restriction that each TW contributing to the Trigger has the same detectorRequest.

The total cross-section can be calculated by using detector deadtime along with the effective prescale, and external information about the beam characteristics.

III. Special Triggers

Special Triggers would also be implemented within the scheme of the Trigger structure. Generally the L1, L2 & L3 triggers would all be “Always accept”. The L0 setup is unchanged. The main addition is that the TCD controller needs to be given instructions to fire the special triggers with some frequency. These instructions are placed in the Trigger structure.

struct Trigger

{

... L0, L1, L2 & L3 stuff ...

TcdSetup tcd;

};

struct TcdSetup

{

int tcdId;

int seconds;

};

This is the same as last year, except I will pick up the trigger command from the L0 part of the Trigger definition.

IV. Offline Interface

The L3 summary is already available in DATAP. This because there is a one-to-one correspondence between L3 algorithm instances and Trigger entries, the L3 summary becomes a bitmask showing which Triggers were satisfied by the event. (The difference from last year is that the L0, L1 & L2 requirements and the requirement that the event be unbiased are also now given by the L3 summary alone.) The only trick is that the bits in the L3 summary are arbitrary. They just refer to the index of the Trigger in the Trigger array. We need to map these bits to a larger bitmask that contains static bits for every Trigger used by STAR for all time. I do this by writing an entry to the database for every run.

struct TriggerInfo

{

UINT32 statusBits[32];

UINT32 PS[32];

UINT32 PsL0[32];

UINT32 PsL1[32];

UINT32 PsL2[32];

UINT32 PsL3[32];

float fractionalCrossSection[32];

float totalCrossSection[32];

float deadTime[32];

// etc...

};

The statusBits flag is a lookup table linking the bit in the L3 summary to the static Trigger bit. This bit is defined in the original Trigger definition structure. PS is the effective total prescale by trigger. The additional fields are ideas for quantities that could be added to the database record when the run is stopped to make analysis easier. These could each be calculated from a scaler analysis.

The final step is that StEvent needs a function

bool checkTriggerBit(int triggerBit)

{

int statusBit=0xffff;

for(int i=0;i<32;i++)

{

if(TriggerInfo.statusBits[i] == triggerBit)

{

statusBit = i;

break;

}

}

if (statusBit == 0xffff)

return false; //trigger not in run

return (statusBit & L3_Summary);

}

To query bits in the 2^32 bit virtual Trigger bitmask.

V. DSM Register configuration

Last year we had a bunch of huge arrays for the DSM register values:

struct TRG_SETUP

{

.....

int L1_DSM_Reg_Data_Values[32][32];

int L2_DSM_Reg_Data_Values[32][32];

.....

int MWDC_DSM_Reg_Data_Values[32][32];

.....

};

This led to lots of unused space, as we only used a few registers per DSM. Also, it meant that the display had trigger parameters organized by DSM rather than by use. Also, the dictionary entries that allowed easy naming of these parameters made them very useful for expansion parameters for unrelated systems such as the FPD.

To make things a little more clear this year I want to switch to a single array:

struct RegValue

{

int object;

int index;

int register;

int value;

};

struct TrgSetup

{

... L0, L1, L2, L3, special trigs, etc...

RegValue registers[MAX];

};

We will agree on object numbers for the different DSM types. Index & register will map to the two indexes of the last years DSM’s. We add new object numbers for expansion.

